Skip to main content

Tensorflow 2 - An (Re)Introduction 2023

Mong Kok, Hong Kong

Github Repository

I have been entering the ML/AI field from the DevOps side - deploying pre-trained models using MLOps/AIOps toolchains. This allowed me to skip most of the basics like how to choose a pre-trained model (or build one yourself) and how to optimize prediction models when their performance start to vain in face of incoming fresh data? I would like to remedy that now.

I already looked into Keras. Which became an integral part of Tensorflow with the 2.0 update and is essential for building quick prototypes based on default pre-trained models and datasets. Now I am looking into Tensorflow itself - coding through docs & tutorials and example projects online.

See also:

Tensorflow Fundamentals

Installing Tensorflow and CUDA on Arch Linux

sudo pacman -S cuda cudnn python-tensorflow-opt-cuda

That's it!

Tensor Constants

Creating Tensors with tf.Constant():

  • Scalar: Value
  • Vector: Value with a direction
  • Matrix: 2d number array
  • Tensor: nd number array
import tensorflow as tf
# print(tf.__version__)
# 2.11.0

# create tensors with tf.constant()
scalar = tf.constant(88, name='scalar')
print(scalar)
# tf.Tensor(88, shape=(), dtype=int32)
print(scalar.ndim)
# 0 dimensions

vector = tf.constant([44, 88], name='vector')
print(vector)
# tf.Tensor([44 88], shape=(2,), dtype=int32)
print(vector.ndim)
# 1 dimensions

matrix = tf.constant([[44., 88.], [33., 55.]], shape=(2, 2), dtype=tf.float16, name='matrix')
print(matrix)
# tf.Tensor(
# [[44. 88.]
# [33. 55.]], shape=(2, 2), dtype=float16)
print(matrix.ndim)
# 2 dimensions

tensor = tf.constant([[[44, 88, 22, 66],
[666, 222, 999, 333]],
[[33, 11, 55, 77],
[111, 888, 444, 111]]], shape=(4, 2, 2), dtype=tf.int16, name='tensor')
print(tensor)
# tf.Tensor(
# [[[ 44 88]
# [ 22 66]]

# [[666 222]
# [999 333]]

# [[ 33 11]
# [ 55 77]]

# [[111 888]
# [444 111]]], shape=(4, 2, 2), dtype=int16)
print(tensor.ndim)
# 3 dimensions

Tensor Variables

Creating Tensors with tf.Variable():

# create tensors with tf.Variable()
constant_tensor = tf.constant([44, 88], name='constant')
print(constant_tensor)
# tf.Tensor([44 88], shape=(2,), dtype=int32)

variable_tensor = tf.Variable([44, 88], name='variable')
print(variable_tensor)
# <tf.Variable 'variable:0' shape=(2,) dtype=int32, numpy=array([44, 88], dtype=int32)>

## change values in tensor
variable_tensor[0].assign(77)
print(variable_tensor)
# <tf.Variable 'variable:0' shape=(2,) dtype=int32, numpy=array([77, 88], dtype=int32)>

# constant_tensor[0].assign(77)
# AttributeError: 'tensorflow.python.framework.ops.EagerTensor' object has no attribute 'assign'

Random Tensors

Tensorflow initializes its weights with Random Tensors. During a model training those tensors are then fitted to better represent the given dataset.

The following two examples generate values from a Normal and a Uniform Distribution:

# create random tensors with tf.random()
## fixed seed for reproducibility
random_tensor_normal = tf.random.Generator.from_seed(42)
## Output 2x2 matrix of random values from a normal distribution
random_tensor_normal = random_tensor_normal.normal(shape=(2, 2))
print(random_tensor_normal)
# tf.Tensor(
# [[-0.7565803 -0.06854702]
# [ 0.07595026 -1.2573844 ]], shape=(2, 2), dtype=float32)


## fixed seed for reproducibility
random_tensor_uniform = tf.random.Generator.from_seed(42)
## Output 2x2 matrix of random values from a uniform distribution
random_tensor_uniform = random_tensor_uniform.uniform(shape=(2, 2))
print(random_tensor_uniform)
# tf.Tensor(
# [[0.7493447 0.73561966]
# [0.45230794 0.49039817]], shape=(2, 2), dtype=float32)

Those values are pseudo random since we are using a fixed seed of 42:

## prove pseudo-randomness
random_tensor_1 = tf.random.Generator.from_seed(42)
random_tensor_1 = random_tensor_1.normal(shape=(2, 2))
random_tensor_2 = tf.random.Generator.from_seed(42)
random_tensor_2 = random_tensor_2.normal(shape=(2, 2))
print(random_tensor_1 == random_tensor_2)
# tf.Tensor(
# [[ True True]
# [ True True]], shape=(2, 2), dtype=bool)

But it is possible to shuffle the order of those values within the tensor. This is generally used in data pre-processing when you need to make sure that your training/testing dataset is not in any particular order that might create an overfitting problem.

tf.random.shuffle() shuffles the values of a tensor around its first dimension:

## shuffle order of generated values
constant_matrix = tf.constant([[44, 88],
[77, 55],
[1, 3]], name='constant')

print(constant_matrix)
# tf.Tensor(
# [[44 88]
# [77 55]
# [ 1 3]], shape=(3, 2), dtype=int32)

## shuffle derives seed from both global and operation level
## you have to set both to get the same shuffle on every run
## tf.random.set_seed(42)
shuffled_matrix = tf.random.shuffle(constant_matrix, seed=42, name='shuffled')

print(shuffled_matrix)
# tf.Tensor(
# [[ 1 3]
# [77 55]
# [44 88]], shape=(3, 2), dtype=int32)

Numpy Arrays and Tensors

Tensorflow has very similar function to Numpy. E.g. generating matrices with fixed 1 or 0 values can be done directly in Tensorflow:

# creating tensors with numpy
## return tensors with `1` values
tensor_one = tf.ones([3, 4], dtype=tf.int16)
print(tensor_one)
# tf.Tensor(
# [[1 1 1 1]
# [1 1 1 1]
# [1 1 1 1]], shape=(3, 4), dtype=int16)

## return tensors with `0` values
tensor_zero = tf.zeros([3, 4], dtype=tf.int16)
print(tensor_zero)
# tf.Tensor(
# [[0 0 0 0]
# [0 0 0 0]
# [0 0 0 0]], shape=(3, 4), dtype=int16)

But sometimes you will need Numpy to preprocess your dataset. Once you have your data inside a Numpy array you will have to transform it into a Tensorflow tensor to proceed (the tensor can be processed on your GPU!):

## turn numpy array into tensor
numpy_array = np.arange(1, 25, dtype=np.int16)
print(numpy_array)
# [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]

tf_vector = tf.constant(numpy_array)
print(tf_vector)
# tf.Tensor([ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24], shape=(24,), dtype=int16)

tf_tensor = tf.constant(numpy_array, shape=(2, 3, 4))
print(tf_tensor)
# tf.Tensor(
# [[[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]

# [[13 14 15 16]
# [17 18 19 20]
# [21 22 23 24]]], shape=(2, 3, 4), dtype=int16)

Tensor Attributes

Tensors are described by:

  • Shape (tensor.shape)
  • Rank (tensor.ndim)
  • Axis or Dimension (tensor[0], tensor[:, 1], ...)
  • Size (tf.size(tensor))
# getting tensor attributes
## rank
### number of tensor dimensions
### example: create a rank 4 tensor
rank_4_tensor = tf.zeros(shape=[2, 2, 2, 2])
print(rank_4_tensor)
# tf.Tensor(
# [[[[0. 0.]
# [0. 0.]]

# [[0. 0.]
# [0. 0.]]]


# [[[0. 0.]
# [0. 0.]]

# [[0. 0.]
# [0. 0.]]]], shape=(2, 2, 2, 2), dtype=float32)
print(rank_4_tensor.ndim)
# 4

## shape
### number of elements of each dimension
print(rank_4_tensor.shape)
# (2, 2, 2, 2)

## axis
### a selected dimension
print(rank_4_tensor[0])
# tf.Tensor(
# [[[0. 0.]
# [0. 0.]]

# [[0. 0.]
# [0. 0.]]], shape=(2, 2, 2), dtype=float32)

## size
### total number of items
print(tf.size(rank_4_tensor))
# tf.Tensor(16, shape=(), dtype=int32)
## bringing it all together:
print("INFO :: Datatype of every element:", rank_4_tensor.dtype)
print("INFO :: Number of dimensions (Rank):", rank_4_tensor.ndim)
print("INFO :: Number of Elements in Tensor:", tf.size(rank_4_tensor).numpy())
print("INFO :: Tensor shape:", rank_4_tensor.shape)
print("INFO :: Elements along 0 Axis:", rank_4_tensor.shape[0])
print("INFO :: Elements along last Axis:", rank_4_tensor.shape[-1])
INFO :: Datatype of every element: <dtype: 'float32'>
INFO :: Number of dimensions (Rank): 4
INFO :: Number of Elements in Tensor: 16
INFO :: Tensor shape: (2, 2, 2, 2)
INFO :: Elements along 0 Axis: 2
INFO :: Elements along last Axis: 2