Skip to main content

Angkor Wat, Cambodia

Tf Image Classifier

InceptionV3

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from sklearn.metrics import (
classification_report,
confusion_matrix,
ConfusionMatrixDisplay)
import seaborn as sns

import tensorflow as tf
from tensorflow.io import TFRecordWriter
from tensorflow.keras import Sequential
from tensorflow.keras.callbacks import (
Callback,
CSVLogger,
EarlyStopping,
LearningRateScheduler,
ModelCheckpoint
)
from tensorflow.keras.layers import (
Layer,
GlobalAveragePooling2D,
Conv2D,
MaxPool2D,
Dense,
Flatten,
InputLayer,
BatchNormalization,
Input,
Dropout,
RandomFlip,
RandomRotation,
RandomContrast,
RandomBrightness,
Resizing,
Rescaling
)
from tensorflow.keras.losses import BinaryCrossentropy, CategoricalCrossentropy, SparseCategoricalCrossentropy
from tensorflow.keras.metrics import CategoricalAccuracy, TopKCategoricalAccuracy, SparseCategoricalAccuracy
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam, SGD
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.regularizers import L2, L1
from tensorflow.keras.utils import image_dataset_from_directory
from tensorflow.train import Feature, Features, Example, BytesList, Int64List
BATCH = 32
SIZE = 224
SEED = 42

EPOCHS = 20
LR = 0.001
FILTERS = 6
KERNEL = 3
STRIDES = 1
REGRATE = 0.0
POOL = 2
DORATE = 0.05
LABELS = ['Gladiolus', 'Adenium', 'Alpinia_Purpurata', 'Alstroemeria', 'Amaryllis', 'Anthurium_Andraeanum', 'Antirrhinum', 'Aquilegia', 'Billbergia_Pyramidalis', 'Cattleya', 'Cirsium', 'Coccinia_Grandis', 'Crocus', 'Cyclamen', 'Dahlia', 'Datura_Metel', 'Dianthus_Barbatus', 'Digitalis', 'Echinacea_Purpurea', 'Echinops_Bannaticus', 'Fritillaria_Meleagris', 'Gaura', 'Gazania', 'Gerbera', 'Guzmania', 'Helianthus_Annuus', 'Iris_Pseudacorus', 'Leucanthemum', 'Malvaceae', 'Narcissus_Pseudonarcissus', 'Nerine', 'Nymphaea_Tetragona', 'Paphiopedilum', 'Passiflora', 'Pelargonium', 'Petunia', 'Platycodon_Grandiflorus', 'Plumeria', 'Poinsettia', 'Primula', 'Protea_Cynaroides', 'Rose', 'Rudbeckia', 'Strelitzia_Reginae', 'Tropaeolum_Majus', 'Tussilago', 'Viola', 'Zantedeschia_Aethiopica']
NLABELS = len(LABELS)
DENSE1 = 1024
DENSE2 = 128

Dataset

train_directory = '../dataset/Flower_Dataset/split/train'
test_directory = '../dataset/Flower_Dataset/split/val'
train_dataset = image_dataset_from_directory(
train_directory,
labels='inferred',
label_mode='categorical',
class_names=LABELS,
color_mode='rgb',
batch_size=BATCH,
image_size=(SIZE, SIZE),
shuffle=True,
seed=SEED,
interpolation='bilinear',
follow_links=False,
crop_to_aspect_ratio=False
)

# Found 9206 files belonging to 48 classes.
test_dataset = image_dataset_from_directory(
test_directory,
labels='inferred',
label_mode='categorical',
class_names=LABELS,
color_mode='rgb',
batch_size=BATCH,
image_size=(SIZE, SIZE),
shuffle=True,
seed=SEED
)

# Found 3090 files belonging to 48 classes.
data_augmentation = Sequential([
# Resizing(224, 224),
RandomRotation(factor=0.25),
RandomFlip(mode='horizontal'),
RandomContrast(factor=0.1),
RandomBrightness(0.1)
],
name="img_augmentation",
)
training_dataset = (
train_dataset
.map(lambda image, label: (data_augmentation(image), label))
.prefetch(tf.data.AUTOTUNE)
)


testing_dataset = (
test_dataset.prefetch(
tf.data.AUTOTUNE
)
)

Building the InceptionV3 TF Model

# transfer learning

backbone = tf.keras.applications.InceptionV3(
input_shape=(SIZE, SIZE, 3),
include_top=False,
weights="imagenet"
)
backbone.trainable = False
input = Input(shape=(SIZE,SIZE,3))
x = backbone(input, training=False)

x = GlobalAveragePooling2D()(x)
x = Dense(DENSE1, activation='relu')(x)
x = BatchNormalization()(x)
x = Dense(DENSE2, activation='relu')(x)

output = Dense(NLABELS, activation='softmax')(x)

inception_model = Model(input, output)
inception_model.summary()
checkpoint_callback = ModelCheckpoint(
'../best_weights',
monitor='val_accuracy',
mode='max',
verbose=1,
save_best_only=True
)
early_stopping_callback = EarlyStopping(
monitor='val_accuracy',
patience=10,
restore_best_weights=True
)
loss_function = CategoricalCrossentropy()
metrics = [CategoricalAccuracy(name='accuracy')]
inception_model.compile(
optimizer = Adam(learning_rate=LR),
loss = loss_function,
metrics = metrics
)

Model Training

inception_history = inception_model.fit(
training_dataset,
validation_data = testing_dataset,
epochs = EPOCHS,
verbose = 1,
# callbacks=[checkpoint_callback, early_stopping_callback]
)

# loss: 2.6270
# accuracy: 0.2870
# val_loss: 2.8781
# val_accuracy: 0.2502

Model Evaluation

inception_model.evaluate(testing_dataset)
# loss: 2.8781 - accuracy: 0.2502

Model Finetuning

for i, layer in enumerate(backbone.layers):
print(i, layer.name)
# we chose to train the top 2 inception blocks, i.e. we will freeze
# the first 249 layers and unfreeze the rest:
for layer in backbone.layers[:249]:
layer.trainable = False
for layer in backbone.layers[249:]:
layer.trainable = True
inception_model.compile(
optimizer=SGD(learning_rate=0.0001, momentum=0.9),
loss = loss_function,
metrics = metrics
)
inception_history = inception_model.fit(
training_dataset,
validation_data = testing_dataset,
epochs = EPOCHS,
shuffle=True,
verbose = 1,
# callbacks=[checkpoint_callback, early_stopping_callback]
)

# loss: 2.4939
# accuracy: 0.3194
# val_loss: 2.7004
# val_accuracy: 0.3100

Model Evaluation

inception_model.evaluate(testing_dataset)
# loss: 2.7047 - accuracy: 0.3087
plt.plot(inception_history.history['loss'])
plt.plot(inception_history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train_loss', 'val_loss'])
plt.savefig('assets/InceptionV3_FT_01.webp', bbox_inches='tight')

tf Emotion Detection

plt.plot(inception_history.history['accuracy'])
plt.plot(inception_history.history['val_accuracy'])
plt.title('Model Accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train_accuracy', 'val_accuracy'])
plt.savefig('assets/InceptionV3_FT_02.webp', bbox_inches='tight')

tf Emotion Detection

test_image_bgr = cv.imread('../dataset/snapshots/Viola_Tricolor.jpg')
test_image_resized = cv.resize(test_image_bgr, (SIZE, SIZE))
test_image_rgb = cv.cvtColor(test_image_resized, cv.COLOR_BGR2RGB)
img = tf.constant(test_image_rgb, dtype=tf.float32)
img = tf.expand_dims(img, axis=0)

probs = inception_model(img).numpy()
label = LABELS[tf.argmax(probs, axis=1).numpy()[0]]

print(label, str(probs[0]))

plt.imshow(test_image_rgb)
plt.title(label)
plt.axis('off')

plt.savefig('assets/InceptionV3_Prediction_01.webp', bbox_inches='tight')

tf Emotion Detection

test_image_bgr = cv.imread('../dataset/snapshots/Strelitzia.jpg')
test_image_resized = cv.resize(test_image_bgr, (SIZE, SIZE))
test_image_rgb = cv.cvtColor(test_image_resized, cv.COLOR_BGR2RGB)
img = tf.constant(test_image_rgb, dtype=tf.float32)
img = tf.expand_dims(img, axis=0)

probs = inception_model(img).numpy()
label = LABELS[tf.argmax(probs, axis=1).numpy()[0]]

print(label, str(probs[0]))

plt.imshow(test_image_rgb)
plt.title(label)
plt.axis('off')

plt.savefig('assets/InceptionV3_Prediction_02.webp', bbox_inches='tight')

tf Emotion Detection

test_image_bgr = cv.imread('../dataset/snapshots/Water_Lilly.jpg')
test_image_resized = cv.resize(test_image_bgr, (SIZE, SIZE))
test_image_rgb = cv.cvtColor(test_image_resized, cv.COLOR_BGR2RGB)
img = tf.constant(test_image_rgb, dtype=tf.float32)
img = tf.expand_dims(img, axis=0)

probs = inception_model(img).numpy()
label = LABELS[tf.argmax(probs, axis=1).numpy()[0]]

print(label, str(probs[0]))

plt.imshow(test_image_rgb)
plt.title(label)
plt.axis('off')

plt.savefig('assets/InceptionV3_Prediction_03.webp', bbox_inches='tight')

tf Emotion Detection

plt.figure(figsize=(16,16))

for images, labels in testing_dataset.take(1):
for i in range(16):
ax = plt.subplot(4,4,i+1)
true = "True: " + LABELS[tf.argmax(labels[i], axis=0).numpy()]
pred = "Predicted: " + LABELS[
tf.argmax(inception_model(tf.expand_dims(images[i], axis=0)).numpy(), axis=1).numpy()[0]
]
plt.title(
true + "\n" + pred
)
plt.imshow(images[i]/255.)
plt.axis('off')

plt.savefig('assets/InceptionV3_FT_03.webp', bbox_inches='tight')

tf Emotion Detection

y_pred = []
y_test = []

for img, label in testing_dataset:
y_pred.append(inception_model(img))
y_test.append(label.numpy())
conf_mtx = ConfusionMatrixDisplay(
confusion_matrix=confusion_matrix(
np.argmax(y_test[:-1], axis=-1).flatten(),
np.argmax(y_pred[:-1], axis=-1).flatten()
),
display_labels=LABELS
)

fig, ax = plt.subplots(figsize=(16,12))
conf_mtx.plot(ax=ax, cmap='plasma', include_values=True, xticks_rotation='vertical')

plt.savefig('assets/InceptionV3_FT_04.webp', bbox_inches='tight')

tf Emotion Detection

Saving the Model

tf.keras.saving.save_model(
inception_model, 'saved_model/inception_model_model_ft', overwrite=True, save_format='tf'
)
# restore the model
restored_model2 = tf.keras.saving.load_model('saved_model/inception_model_model_ft')
# Check its architecture
restored_model2.summary()
restored_model2.evaluate(testing_dataset)
# loss: 2.7047 - accuracy: 0.3087